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Resonance fluorescence from a two-state atom has been predicted to exhibit quadrature
squeezing below the Heisenberg uncertainty limit, provided that the optical parameters (Rabi frequency,
detuning, laser linewidth, etc.) are chosen carefully. When the correlation between two quadratures of
the radiation field does not vanish, however, the Heisenberg limit for quantum fluctuations might be an
unrealistic lower bound. A generalized uncertainty relation, due to Schr6dinger, takes into account the
possible correlation between the quadrature components of the radiation, and it suggests a modified
definition of squeezing. We show that the coherence between the two levels of a laser-driven atom is
responsible for the correlation between the quadrature components of the emitted fluorescence, and that
the SchrOdinger uncertainty limit increases monotonically with the coherence. On the other hand, the
fluctuations in the quadrature field diminish with an increasing coherence, and can disappear completely
when the coherence reaches 1/2, provided that certain phase relations hold.

I. RESONANCE FLUORESCENCE

We consider a two-state atom, with excited state le>, ground state Ig>, and level

separation coo, illuminated by an intense laser. The electric field at the position of the

atom is assumed to have the form

F_.L(t) = EoRe_Lexp[-i(t.OLt+t_(t)] , (1.1)

where O(t) is a stochastic phase which takes into account the laser linewidth. We shall

assume that this is a diffusion process with independent increments. The driven atom
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will emit resonance fluorescence, and the positive-frequency part of the electric field of

this radiation is

E(+)(t) = Td+(t) , (1.2)

with d+(t)= Ig ><el the atomic lowering operator, and _ an overall constant. The

fluctuations in the amplitude (or phase) are measured by a homodyne detector with the

driving laser as local oscillator. The slowly-varying operator under measurement is

therefore 1

E0(t ) = E(+)(t) exp[i(OLt+¢(t )-0)] , (1.3)

with 0 the adjustable mixing angle of the detector. Essentially, the detector measures the

variance of this quadrature operator, denoted by var(E0).

The fluctuations in E0(t) will be expressed in terms of the parameter r0, defined

as

r0 = var(Eo)/<E 2> = 1-<E 0>2/<E 2> (1.4)

Clearly, this parameter lies in the range 0 < r0 < 1. For r 0 = 0 we have var(E0) = 0,

which corresponds to no fluctuations at all, and for r0 = 1 we have < E 0 > = 0. This case

corresponds to a pure random phase of the field (like in a number state).

II. SOUEEZING

For Heisenberg's uncertainty relation we compare the quadrature field E 0 with the

field E0., which is the same field except with a different mixing angle. Then the

uncertainty relation can be written as

ror ¢ > L_ , (2.1)

with L H the Heisenberg lower limit, given by

L H = 22 I<[E°'E°']>l
4< >< >

(2.2)
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If we insert the expression for the quadrature field in L H, it follows that the dependence

on the mixing angles 0 and 0' has the form

LH .c Isin(0-0')l , (2.3)

and therefore we take 0' = 0 + n_ with n as an integer. Then E 0 is said to be squeezed if

ro < L H , (2.4)

in view of (2.1).

The fluctuation parameter r 0 can be expressed in terms of matrix elements of the

atomic density operator G (either in the rotating frame or not). We find

r0 = 1-41Geg(t)12COS2_ , (2.5)

with the angle 8 equal to

= 0 + arg y - arg Geg (2.6)

The Heisenberg lower limit can be written as

L H = Ing(t)-ne(t)l , (2.7)

in terms of the populations n e and ng of the excited state and ground state, respectively.

From (2.5) it then follows that the fluctuations in E 0 are minimum if the mixing angle 0

is chosen such that 8 becomes an integer multiple of 7t. This corresponds to maximum

squeezing, given G, because L H does not depend on 0. For 8 = nr¢ the condition for

squeezing becomes

1 - 4lOeg(t)l 2 < Ing(t) - ne(t)l (2.8)

Whether squeezing occurs or not depends therefore on the populations of the atomic

levels and the coherence between the levels.
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III. STEADY STATE

When the atom has spent a sufficient amount of time in the laser field, its density

operator will reach a steady state. The Rabi frequency of the transition is defined as

= Eol<el . LIg>[/ , (3.1)

with _ the dipole moment operator of the atom, and the laser linewidth _. will be

parametrized through the combination

rl = _ + _. / A , (3.2)

where A is the Einstein coefficient for spontaneous decay. The detuning between the

laser and the atomic resonance is

A = coL - to o (3.3)

In terms of these parameters, the absolute value of the coherence becomes 2

I_eg I = IE_ J3 A2
A2_ 2+

,_ f_,_rl + A2 + A2rl 2
(3.4)

and the difference in level population is

A2 + A2TI 2

ng - n e = f_2r 1 + A2 + A2112
(3.5)

which equals the Heisenberg lower limit. The condition for squeezing, for _ = 0, then

becomes

(1-rl)A 2 > 112(f_ 2 + A2('q-1)) , (3.6)

as in Ref. (2). It is easy to see that for rl > 1, which is k > A/2, squeezing never occurs.

The fluctuation parameter r is, for 6 = 0,
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r = 1 - f_2 A2 + A21)2

[D2r I + A2 + A21"12]
(3.7)

For a given detuning A and laser linewidth _., the fluctuations are minimum if we take the

Rabi frequency, which is proportional to the laser power, equal to

_r-_2 = (A 2 + A2,rl2) / 1.I (3.8)

Then r becomes

r = 1-1/4r i , (3.9)

which is independent of A. This minimizes for _. = 0, which gives r = 1/2 and

_,-)2= 2(A2 + A 2 / 4).

A convenient parametrization follows by introducing the new variable

= A2 + A21] 2 , (3.10)

dimensionless and proportional to the laser power. Then r and L H can be written as

(5 = 0) (3.11)
r = 1 (_rl+l) 2

1
L n = _ , (3.12)

_rl+l

and the condition for squeezing becomes

rl(_rl+l) < 1 (5=0) (3.13)

The dependence of r and L H on { is shown in Fig. 1 for _i = 2_= 0. The difference s = r -

L H is also shown, and a negative value of s corresponds to squeezing in the quadrature

field below the Heisenberg uncertainty limit. Squeezing occurs for { < 2, and the

maximum squeezing appears for { = 2/3, which gives s = -1/8. Notice that the minimum

in r is located at _ = 2, corresponding to s = 0. Hence, the best relative squeezing

(minimum s) does not coincide with the smallest relative fluctuations in the field

(minimum r).
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Fig. I. Plot of parameters r, L H, and s as a function of _.
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IV. SCHRODINGER UNCERTAINTY

Heisenberg's uncertainty relation (2.1) sets a lower bound on the product of two

variances. It is well known, however, that this is not the sharpest lower bound. A

different uncertainty relation, due to Schr6dinger, is 3

roro , > L2 (4.1)

The Schr'odinger lower bound is related to the Heisenberg lower bound by

1 LH ,Ls
X/1- C2

where the correlation coefficient c is defined as

(4.2)
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c - ½ < E°E°' ÷ Ee'E° > - < E° >< E°' >

_/var(Eo) var(Eo.)

It can be verified that c lies in the range

(4.3)

-1 < c < 1 , (4.4)

which then gives

Ls > LH (4.5)

This shows that the possible higher bound in Schr'6dinger's relation is due to the

correlation between quadratures of the field with different values of 0. We shall always

take 0' = 0 + n / 2, as before.

For resonance fluorescence the correlation coefficient can be expressed in terms

of the matrix elements of the atomic density operator. We obtain

21 t_e_ 12sin(28)
c = (4.6)

i{1 - 41t_eg 12cos 2 8} {1 - 41 t_eg 12sin 2 8} '

showing that c is determined by the coherence between the levels only, and not by the

populations of the atomic states. The relation between the Schr6dinger limit and the

Heisenberg limit then becomes

I 41t_egl4
L s = L H 1+ sin2(28)

1 - 41t_eg 12
(4.7)

When 8 is an integer multiple of n/2 or when the coherence is zero, we have L s = L H.

When 8 is not an integer multiple of n/2, the Schr'odinger limit can become arbitrarily

large when the coherence approaches 1/2 (any coherence, in absolute value, is smaller

than 1/2 in a two-level system). Figure 2 shows the ratio Ls/L H for 8 = n/4, and as a

function of the atomic coherence.

In terms of the parameters _ and TI the relation (4.7) becomes

I ( _ ) 2 sin2(28) (4.8)L s = L H 1+¼ _-_ (_Tl+l)2__
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The laser power that minimizes s for rl = 1/2 and 8 = 0 is _ = 2/3. Then the minimum

value of s is -1/8 and the minimum of r is 5/8. Figure 3 illustrates the behavior of r, LH,

and LS as a function of 8 for these values of _ and 11.

2

0

lL s / LH J

I

0 0.25 la=gl 0.5

Fig. 2. Ratio LslL H for 8 = rd4 as a function of the coherence.
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Fig. 3. Plot of the Heisenberg- and Schr6dinger limits and the fluctuation parameter r as

a function of S.
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V. CONCLUSIONS

We have studied the possibilities for squeezing in the quadrature components of

resonance fluorescence from a two level atom. It was shown that the coherence between

the two levels gives rise to a correlation between quadrature fields with a different

mixing angle (in homodyne detection). This implies that the uncertainty limit on

quantum fluctuations which is set by Schr6dinger's relation can be considerably higher

than the corresponding limit in Heisenberg's relation. It appears that in the steady state

both limits are very close, as illustrated in Fig. 3. For pulsed-laser excitation, however,

the coherence can approach its limiting value of 1/2, and this would increase the

Schr6dinger limit dramatically. Then the Heisenberg lower bound is an unrealistic lower

limit, and squeezing should be defined with respect to the Schr6dinger uncertainty

relation.

_Acknowledm'nent

This research was supported in part by the National Science Foundation under Grant No.

CHE-9196214.

KF.EF,g.Eh  

1. M.J. Collett, D. F. Walls and P. Zoller, Opt. Commun. 52, 145 (1984).

2. H.F. Arnoldus and G. Nienhuis, Optica Acta 30, 1573 (1983).

3. V.V. Dodonov, E. V. Kurmyshev and V. I. Man'ko, Phys. Lett. 79A, 150 (1980).

329




